Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hapipah Ali, ${ }^{\text {a }}$ Nur Ashikin Khamis, ${ }^{\text {a }}$ W. Jefri Basirun ${ }^{\text {a }}$ and Bohari M. Yamin ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia, and ${ }^{\mathbf{b}}$ School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
Correspondence e-mail:
bohari@pkrisc.cc.ukm.my

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.064$
ωR factor $=0.145$
Data-to-parameter ratio $=16.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

In the centrosymmetric title compound, $\left[\mathrm{Zn}\left(\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2^{-}}\right.$ $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}$], the Zn atom is chelated by the O and N atoms of two bidentate ligands. The coordination geometry of the central Zn atom is octahedral. The crystal packing is stabilized by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions.

Comment

Recrystallization of $\left[\mathrm{Zn}\left(\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\right]$ from DMSO gives dimeric $\left[\mathrm{Zn}_{2}\left(\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)_{2}\right]$ (Ali et al., 2003). However, the title compound, (I), obtained by recrystallization of the same complex from pyridine, is monomeric and centrosymmetric about the central Zn atom (Fig. 1). The coordination geometry of the Zn atom is octahedral, where atoms $\mathrm{N} 1, \mathrm{~N} 1^{\mathrm{i}}, \mathrm{O} 2$ and $\mathrm{O} 2^{\mathrm{i}}$ (symmetry code as in Table 1) occupy the equatorial positions, with the cis angles lying in the range 76.19 (8)-92.88 (9) ${ }^{\circ}$. The bidentate ligands chelate to the Zn atom via O and N atoms. Two pyridine groups occupy the axial positions. The basal atoms $\left(\mathrm{Zn} 1, \mathrm{O} 2, \mathrm{~N} 1^{\mathrm{i}}, \mathrm{O} 2^{\mathrm{i}}\right.$ and $\mathrm{N} 1)$ are perfectly coplanar. The $\mathrm{Zn} 1-\mathrm{N} 1$ bond length of $2.2222(10) \AA$ is slightly longer than that in the complex $\left[\mathrm{Zn}_{2}\left(\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)_{2}\right]$, viz. 2.0466 (16) \AA (Ali et al., 2003). The structural dimensions of the bidentate ligand (Table 1) are in the normal ranges (Allen et al., 1987; Orpen et al., 1989) and comparable with those in the dimeric DMSO complex. The chelate ring $\mathrm{Zn} 1 / \mathrm{O} 2 / \mathrm{C} 9 / \mathrm{N} 2 / \mathrm{N} 1^{i}$ is planar, with a maximum deviation from the mean plane of 0.072 (2) \AA for atom O 2 . The benzene ring $\mathrm{C} 9 / \mathrm{C} 10-\mathrm{C} 15$ and the phenol group O1/C1-C6 are each planar and form a dihedral angle of 37.5 (2) ${ }^{\circ}$. There are intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (Table 2). The crystal packing is stabilized by intermolecular $\mathrm{C} 13-\mathrm{H} 13 A \cdots \mathrm{O} 1^{\mathrm{ii}}$ interactions (symmetry code as in Table 2), which form zigzag polymeric chains extending along the b axis (Fig. 2).

(I)

Received 12 May 2004 Accepted 17 May 2004 Online 29 May 2004

Bis\{2'-[1-(2-hydroxyphenyl)ethylidene]-benzohydrazido\}bis(pyridine- κN)zinc(II)

Experimental

The complex was synthesized by the template condensation of 2-hydroxyacetophenonebenzhydrazide ($0.3 \mathrm{~g}, 2.2 \mathrm{mmol}$) with zinc acetate dihydrate $(0.24 \mathrm{~g}, 1.1 \mathrm{mmol})$ by refluxing and stirring in ethanol for 5 h . The light-yellow solid was filtered off and recrystallized from pyridine-ethanol.

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right]$
$M_{r}=730.12$
Monoclinic, $P 2_{1} / c$
$a=10.3531$ (11) A
$b=15.0133$ (16) \AA
$c=11.6892(12) \AA$
$\beta=95.138(2)^{\circ}$
$V=1809.6(3) \AA^{3}$
$Z=2$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.817, T_{\text {max }}=0.892$
9919 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.064$
$w R\left(F^{2}\right)=0.145$
$S=1.22$
3933 reflections
237 parameters
H atoms treated by a mixture of independent and constrained refinement
$D_{x}=1.340 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2851 reflections
$\theta=1.9-27.0^{\circ}$
$\mu=0.73 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, light yellow
$0.29 \times 0.20 \times 0.16 \mathrm{~mm}$

3933 independent reflections
3304 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=27.0^{\circ}$
$h=-13 \rightarrow 11$
$k=-19 \rightarrow 15$
$l=-13 \rightarrow 14$

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0583 P)^{2}\right. \\
\quad+0.6177 P] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.54 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.24 \mathrm{e} \AA^{-3}
\end{gathered}
$$

Table 1

Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Zn} 1-\mathrm{O} 2^{\mathrm{i}}$	$2.0261(19)$	$\mathrm{O} 2-\mathrm{C} 9$	$1.267(3)$
$\mathrm{Zn} 1-\mathrm{N} 3^{\mathrm{i}}$	$2.222(3)$	$\mathrm{N} 1-\mathrm{C} 7$	$1.284(4)$
$\mathrm{Zn} 1-\mathrm{N} 1^{\mathrm{i}}$	$2.223(2)$	$\mathrm{N} 1-\mathrm{N} 2^{\mathrm{i}}$	$1.395(3)$
$\mathrm{O} 1-\mathrm{C} 5$	$1.351(5)$	$\mathrm{N} 2-\mathrm{C} 9$	$1.312(4)$
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{O} 2$	180	$\mathrm{O} 2-\mathrm{Zn} 1-\mathrm{N} 1$	$103.81(8)$
$\mathrm{O} 2-\mathrm{Zn} 1-\mathrm{N} 3^{\mathrm{i}}$	$90.56(9)$	$\mathrm{N} 3^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{N} 1$	$92.88(9)$
$\mathrm{O} 2-\mathrm{Zn} 1-\mathrm{N} 3$	$89.44(9)$	$\mathrm{N} 3-\mathrm{Zn} 1-\mathrm{N} 1$	$87.12(9)$
$\mathrm{N} 3^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{N} 3$	180	$\mathrm{~N} 1-\mathrm{Zn} 1-\mathrm{N} 1^{\mathrm{i}}$	180
$\mathrm{O}^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{N} 1$	$76.19(8)$		

Symmetry code: (i) $2-x,-y, 1-z$.

Table 2
Hydrogen-bonding geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H1O $\cdots \mathrm{N} 1$	$0.77(4)$	$2.56(4)$	$3.120(4)$	$131(3)$
O1-H1O $\cdots \mathrm{N} 2^{\mathrm{i}}$	$0.77(4)$	$1.83(4)$	$2.545(4)$	$155(3)$
C8-H8A O^{2}	0.96	2.24	$3.185(4)$	167
C13-H13A $\cdots \mathrm{O}^{\text {ii }}$	0.93	2.50	$3.344(5)$	152

Symmetry codes: (i) $2-x,-y, 1-z$; (ii) $1+x, \frac{1}{2}-y, \frac{1}{2}+z$.
After their location in a difference map, all H atoms except those on atom O 1 were positioned geometrically and allowed to ride on the parent C atom, with $\mathrm{C}-\mathrm{H}=0.93-0.96 \AA$ with $U_{\text {iso }}(\mathrm{H})=1.2$ or

The molecular structure of the title compound, (I), with 50% probability displacement ellipsoids. The suffix A corresponds to symmetry code (i) in Table 1.

Figure 2
Packing diagram of the title complex, viewed down the c axis. Dashed lines denote $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.
$1.5 U_{\text {eq }}(\mathrm{C})$. The H atom on O 1 was located in a Fourier difference map and refined isotropically.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

The authors thank the Malaysian Government and both Universiti Malaya and Kebangsaan Malaysia for research grants IRPA Nos. 09-02-03-0125 and 09-02-02-993, respectively.

References

Ali, H. M., Kadir, Z., Yusof, M. S. M. \& Yamin, B. M. (2003). Acta Cryst. E59, m655-657.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. \& Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1-83.

metal-organic papers

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

